1. Abstract

• SMOS Mission
 • Soil moisture and ocean surface salinity are of significant importance to improve meteorological and climate prediction
 • The SMOS mission monitors these quantities, by measuring the brightness temperature by means of L-band aperture synthesis interferometry
 • Despite the L-band being reserved for Earth and space exploration, SMOS images reveal large number of strong outliers, produced by illegal antennas emitting in this band.
 • Our contribution
 • In this work we propose a variational approach to recover a super-resolved, denoised brightness temperature map by modeling the image formation as the superposition of three super-resolved components in the spatial domain: the target brightness temperature map \(u \), an image \(o \) modeling the outliers, and Gaussian noise \(\epsilon \).
 • The proposed model is interesting in itself, as it is general enough to be applied to other restoration problems.
 • Experiments on real and synthetic data confirm the suitability of the proposed approach.

2. SMOS Mission

• SMOS Mission Objective: Observe soil moisture over the land and salinity over the oceans
• Principles
 • Moisture and salinity affect microwave radiation emitted from the Earth
 • Use L-band microwave radiometer system
 • Major drawback: antenna’s size
• Interferometry principle
 • Cross-correlation between all pairs of receivers to obtain the Visibility Function \(V_{ij} \):
 \[V_{ij} = \frac{1}{2\pi} \int \int \frac{G(\xi)G(\eta)F(u)(\xi,\eta)F(v)(\xi-\xi',\eta-\eta')}{\sqrt{||\xi||^2+||\eta||^2}} \, d\xi \, d\eta \]
 • \(T \) can be obtained indirectly from \(V_{ij} \).
• The MIRAS instrument
 • Support of \(T \) is the unit circle
 • Optimum sampling grid on visibilities is an hexagonal grid
 • Two possible configurations: triangular or Y shaped arrays
 • Frequency coverage is larger for Y-shaped (but does not cover the entire hexagonal domain)

Problem Statement

If we consider the discrete version of this linear operator, it can be stated by means of matrix \(G \):
\[GT = V \]
\[\text{dim}(T) > \text{dim}(V) \] the problem is under constrained: we need to add a priori information to regularize it.

• A direct approach: Zero padding regularization (Anterrieu 2004)
 \[\min_{T} \left\{ \|V - GT\|^2_F \right\} \quad \text{s.t.} \quad (I - F_1)T = 0 \quad \text{with} \quad F_1 = F^* Z_0 Z_1^* F \]
 This problem can be reformulated as:
 \[\min_{T} \left\{ \|V - GT\|^2_F \right\} \quad \text{s.t.} \quad F_1 T = 0 \]
 \(T \) can be simply recovered from \(F_1 \) by \(T = F^* Z_0 Z_1^* F \)

• Zero padding limitations
 • Outliers: Illegal transmitters that generate strong Gibbs effects
 • Poor spectral extrapolation: limited resolution

5. Proposed method

Data Modeling

• Image \(u \): Original brightness temperature image of bounded variation: \(TV \) semi-norm
• Image \(o \): Outliers image: Sparsity norm \(\|\ell\|_0 \) or \(\ell^1 \)
• Image \(\epsilon \): Gaussian image noise: \(\epsilon^2 \) data fidelity term

Variational Formulation

\[\min \left\{ TV(u) + \mu S(o) \right\} \quad \text{s.t.} \quad \|W(F(o + u) - D)|^2 \right\|_2 \leq \|\epsilon\|^2 \]

where
- \(D \): Original LIB data \(T \)
- \(W \): Weight matrix

Final Method

\[\min \left\{ \|W(F(o + u) - D)|^2 + \lambda \mu S(o) \right\} \]

\(\lambda: \) Intermediate cell required to compute spectral TV method (Moisan 2007) \(\rightarrow \) reduces staircasing effect

Numerical Implementation

Two stage process:
- Stage one Solve the minimization problem with sparsity term \(S(o) = \|\ell\|_0 \):
 • the problem is convex
 • can be solved iteratively with a Forward-Backward algorithm
 • converges to a global minimum
- Stage two Starting from the previous solution, we solve the same problem with \(S(o) = \|\ell\|_2 \):
 • the problem is non-convex due to the \(\ell_0 \) norm
 • for this functional the Forward-Backward algorithm converges to a local minimum [Blumensath and Davies 2005]

Fordward-Backward method [Combettes-Wajs 2005]

\[E(x) = \|W(F(o + u) - D)|^2 + \lambda TV(u) + \mu S(o) \]

Implementation of proximal operators
- \(\text{prox}_{\ell_0} (a) = \{a\}_{a \text{ does not sum up to } 0} \)
- \(\text{prox}_{\ell_1} (a) = \{a\}_{a > 0} \) maxima process
- \(\text{prox}_{\ell_{1/2}} \): soft-thresholding or shrinkage operator
- \(\text{prox}_{\ell_{\infty}} \): the hard-threshold operator

Proximal operator

\[\text{prox}_{\ell_0}(a) \rightarrow \text{arg min } \frac{1}{2} \|a - b\|^2 + \frac{\lambda}{2} \|a\|_1 \]

Experiments on real data

Conclusions

We propose a variational method to restore images from the LIB SMOS data product.
- The method models the observations as the superposition of three components on the spatial domain:
 • The target brightness temperature map \(u \)
 • The outliers image \(o \) due to the illegal emissions
 • A Gaussian noise image \(\epsilon \)
- The method also extrapolates the spectral domain of \(u \) thanks to the total variation semi-norm
- The method is general enough to be used for other restoration problems

Future work

- Improve convergence rate using other optimization algorithms (FISTA, mFISTA)
- Systematic evaluation of the method using real and simulated data provided by CESBIO