Constrained optimization – Non-differentiable problems

Optimization with Applications to Image Processing

19/04/2012

1 Constrained optimization

1.1 Projected gradient method

Let \(A \) be an invertible matrix in \(\mathbb{R}^{N \times N} \) and \(b \in \mathbb{R}^N \), we want to find the minimum of

\[
J(x) = \|Ax - b\|_2^2, \quad \text{subject to} \quad x_i \geq 0, \quad i = 1 \leq i \leq N.
\]

1. Compute \(\nabla J \).
2. Show that \(J \) is strongly convex, and that \(\nabla J \) is Lipschitz (give the associated constants).
3. Specify the projected gradient algorithm for the minimization problem considered here. For what values of the step-size \(\tau \) is convergence ensured?
4. Write down a function \(x = \text{minimize}(A, b, \tau, r) \) that computes the output of the previous algorithm at iteration \(r \).
5. Apply the previous parts to solve the minimization problem with

\[
A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}, \quad b = \begin{pmatrix} -3 \\ 4 \end{pmatrix}.
\]
6. Check that the obtained solution is correct, by computing the solution by hand using Kuhn-Tucker relations.

1.2 Projected gradient method (bis)

Consider the set \(C \in \mathbb{R}^3 \),

\[
C = \{ (x_1, x_2, x_3) \in \mathbb{R}^3, x_1^2 + x_2^2 \leq 1 \}.
\]

1. (a) What is the geometric form of \(C \)? Show that \(C \) is convex.
 (b) Write an explicit expression for \(P_C \), the orthogonal projection on \(C \).
 (c) Write down a function \(z = \text{project}(x) \) that takes as input a vector \(x \in \mathbb{R}^3 \) and compute its projection on \(C \in \mathbb{R}^3 \).
2. Let \(A \in \mathbb{R}^{3 \times 3} \) invertible, and \(b \in \mathbb{R}^N \). We consider the function \(J : \mathbb{R}^3 \to \mathbb{R}^3 \) defined by \(J(x) = \|Ax - b\|_2^2 \), and the problem (P): minimize \(J(x) \) under the constraint \(x \in C \).
 (a) Show that (P) admits a unique solution.
 (b) Specify the projected gradient algorithm for the minimization problem considered here. For what values of the step-size \(\tau \) is convergence ensured?
 (c) Write down a function \(x = \text{minimize}(A, b, \tau, r) \) that computes the output of the previous algorithm at iteration \(r \).

*Exercises by J.-F. Aujol
(d) Solve (P) numerically for
\[
A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & 1 \\ 1 & 0 & 2 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}.
\]

(e) For this particular case, and for a precision of 10^{-4}, find empirically the largest step-size τ_c for which convergence is observed.

1.3 Active constraint and Uzawa’s method

In this exercise we consider the problem (P):
\[
\begin{align*}
\text{maximize } & f(x_1, x_2) = x_2^2 + x_2^2 - 14x_1 - 6x_2 - 7 \\
\text{s.t. } & x_1 + x_2 \leq 2, \\
& x_1 + 2x_2 \leq 3.
\end{align*}
\]

1. Compute the gradient and the Hessian matrix of f.
2. Solve first the unconstrained minimization of f, by a method of your choice.
3. Implement a penalization method to solve the constrained minimization problem (P). Find the minimizer. Which is the active constraint?
4. Implement the Newton-Lagrange method, which consists in applying Newton’s method to f restricted to the active constraint.
5. Write (P) in the form: $\min < Au, u > - < b, u > \text{ s.t. } Cu \leq d$, and solve it using Uzawa’s method. Check consistency between this numerical solution and the previous one.

2 A non-differentiable problem: Total Variation minimization

In the following exercises we explore different approaches to minimize the energy associated to the image restoration model proposed by Rudin, Osher and Fatemi (ROF):
\[
E(u) = \frac{1}{2\mu} \| f - u \|^2 + \int_\Omega |Du|.
\]

2.1 Differentiable approximation of the Total Variation

Consider the following approximation of ROF’s model:
\[
E_\epsilon(u) = \int_\Omega \sqrt{|\nabla u|^2 + \epsilon^2} + \frac{1}{2\mu} \| f - u \|^2.
\]

2.1.1 Gradient descent

Compute the Euler-Lagrange equation associated to E_ϵ. Find the minimizer using a gradient descent method. Choose an image and perturb it with white Gaussian noise. Restore it and estimate empirically the convergence speed of the method.

2.1.2 Quasi-Newton method

Minimize E_ϵ using a quasi-Newton method. Determine empirically the convergence speed. Remark: it can be proved that this kind of method has linear convergence rate, however quadratic convergence rates are usually observed in practice.

2.2 Projection Algorithms

We recall that the solution of ROF model is given by
\[
u = f - \mu P_G(f/\mu).
\]
Hence, the computation of u is straightforward once we know how to compute the projection on G.

2
2.2.1 Chambolle’s algorithm

To compute the projection, the discrete problem to be solved is

$$\min \left\{ \|\text{div}(p) - f/\mu\|^2 : p \in (\mathbb{R}^{N\times N})^2, \|p(i, j)\|^2 \leq 1, \ 1 \leq i, j \leq N \right\}.$$

One possibility is to use a fixed point method to solve the Kuhn-Tucker relations. This gives:

$$p_0 = 0,$$

$$p_{i,j}^{n+1} = p_{i,j}^n + \tau (\nabla \text{div}(p) - f/\mu)_{i,j}$$

Chambolle shows that for $\tau < 1/8$, then $\text{div}(p)$ converges to $P_{\mathcal{G}}(f/\mu)$ as $n \to +\infty$. In practice, convergence is observed for $\tau < 1/4$.

Implement the previous iteration, test it on images perturbed by noise, and check empirically the previous assertions on τ. Perform an empirical analysis of the convergence speed.

2.2.2 Projected gradient algorithm

The projection can also be computed using a projected gradient method:

$$v^n = f/\mu + \text{div}(p^n)$$

$$p_{i,j}^{n+1} = \frac{p_{i,j}^n + \tau (\nabla v^n)_{i,j}}{\max \{1, |p_{i,j}^n + \tau (\nabla v^n)_{i,j}|\}}$$

It can be shown that for $\tau < 1/4$, the iteration converges to the minimizer or $E(u)$.

Implement the previous iteration, test it on images perturbed by noise, and check empirically the previous assertions on τ. Perform an empirical analysis of the convergence speed.

2.2.3 Extension to deconvolution

We now consider the deconvolution problem, with the following model:

$$E(u) = \frac{1}{2\mu} \|A_{\text{a}} - f\|^2 + \int_{\Omega} |Du|,$$

where A is a blur operator (consider here a Gaussian kernel). It can be proved that the following scheme converges to u when the step-size ν satisfies $\nu\|A^*A\| \leq 1$:

$$\nu^n = u^n + \nu A^*(f - Au^n)$$

$$\nu^{n+1} = \arg \min_u \left\{ \frac{1}{2\mu} \|\nu^n - u\|^2 + \int |Du| \right\}$$

Implement this minimization procedure using a projected gradient method. Compare its convergence speed to the one obtained by directly minimization of the approximated differentiable total variation using a quasi-Newton algorithm.

2.3 Nesterov’s algorithm

Nesterov’s algorithm is particularly efficient. For the minimization of $E(u)$ it takes the form:

Initialization: $k = 0, \nu^0 = 0, x^0 = 0, L = 8\mu$.

Repeat until stopping criteria:

1. Set $k = k + 1$, and compute $\eta^k = -\nabla(f - \mu \text{div}(x^k))$. 3
2. Set $y^k = P_K(x^k - \eta^k/L)$, with $K = \{x \in (L^2)^2 | \|x\| \leq 1\}$.

3. Set $v^k = v^{k-1} + \frac{k+1}{k+2} \eta^k$.

4. Set $z^k = P_K(-v^k/L)$.

5. Set $x^{k+1} = \frac{2}{k+1} z^k + \frac{k+1}{k+2} y^k$.

Output: $u = f - \mu \text{div}(y^{\text{lim}})$.

Implement this method. Compare its convergence speed with the ones of the other methods explored in this problem set.